Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583220

RESUMO

Blast fishing is an illegal fishing method that not only affects fish populations and the marine ecosystem, but also local food security and local economy. Despite its effects, blast fishing continues to persist in many coastal regions around the world, including Todos os Santos Bay (BTS - Baia de Todos os Santos) in Northeastern Brazil. This study provides the first acoustic record of underwater explosions along this region. The acoustic data were collected between 2016 and 2018, from a boat-survey platform, using a portable system consisting of an HTI-90 min hydrophone (sensitivity of about -165 dB re 1 V/µPa) connected to a TASCAM DR-40 digital recorder (combined frequency response up to 30 kHz), recording at 7 m depth. The acoustic analysis was performed using both RAVEN 1.6 and MATLAB 2021a softwares. The results revealed a distinctive underwater explosion signal detected in the BTS, indicating evidence of blast fishing activities. The acoustic characterization of blast fishing in BTS provides crucial information on its occurrence and extent of this destructive practice worldwide.


Assuntos
Acústica , Baías , Conservação dos Recursos Naturais , Pesqueiros , Brasil , Animais , Peixes , Monitoramento Ambiental , Explosões , Ecossistema
2.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570089

RESUMO

In this study, the synthesis of tungsten carbides in a copper matrix by spark plasma sintering (SPS) is conducted and the microstructure formation mechanisms of the composite materials are investigated. The reaction mixtures were prepared by the high-energy mechanical milling (MM) of W, C and Cu powders. The influence of the MM time and SPS temperature on the tungsten carbide synthesis in an inert copper matrix was analyzed. It was demonstrated that the milling duration is a critical factor for creating the direct contacts between the W and C reactants and increasing the reactive transformation degree. A WC-W2C-Cu composite was fabricated from the W-C-3Cu powder mixture milled for 10 min and subjected to SPS at a temperature of 980 °C for 5 min. The formation of unconventional microstructures with Cu-rich regions is related to inter-particle melting during SPS. The WC-W2C-Cu composite showed a promising combination of mechanical and functional properties: a hardness of 300 HV, an electrical conductivity of 24% of the International Annealed Copper Standard, a residual porosity of less than 5%, a coefficient of friction in pair with a WC-6Co counterpart of 0.46, and a specific wear rate of the material of 0.52 × 10-5 mm3 N-1 m-1.

3.
Phys Chem Chem Phys ; 23(7): 4353-4364, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33588429

RESUMO

The existence of a new two dimensional CN2 structure was predicted using ab initio molecular dynamics (AIMD) and density-functional theory calculations. It consists of tetragonal and hexagonal rings with C-N and N-N bonds arranged in a buckling plane, isostructural to the tetrahex-carbon allotrope. It is thermodynamically and kinetically stable suggested by its phonon spectrum and AIMD. This nanosheet has a high concentration of N and contains N-N single bonds with an energy density of 6.3 kJ g-1, indicating its potential applications as a high energy density material. It possesses exotic mechanical properties with a negative Poisson's ratio and an anisotropic Young's modulus. The modulus in the zigzag direction is predicted to be 340 N m-1, stiffer than those of h-BN and penta-CN2 sheets and comparable to that of graphene. Its ideal strength of 28.8 N m-1 outperforms that of penta-graphene. The material maintains phonon stability upon the application of uniaxial strain up to 10% (13%) in the zigzag (armchair) direction or biaxial strain up to 5%. It possesses a wide indirect HSE band gap of 4.57 eV, which is tunable between 3.37-4.57 eV through strain. Double-layered structures are also explored. Such unique properties may facilitate its potential applications as a high energy density material and in nanomechanics and electronics.

4.
Entropy (Basel) ; 22(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33285918

RESUMO

In this paper, the structural characteristics of a W-Ta-Mo-Nb-V-Cr-Zr-Ti non-equiatomic refractory metal alloy obtained by spark plasma sintering (SPS) of a high-energy ball-milled powder mixture are reported. High-energy ball milling resulted in the formation of particle agglomerates ranging from several tens to several hundreds of micrometers. These agglomerates were composed of micrometer and submicrometer particles. It was found that, during ball milling, a solid solution of A2 structure formed. The grains of the sintered material ranged from fractions of a micrometer to several micrometers. During SPS, the phase transformations in the alloy led to the formation of a Laves phase of C15 structure and ZrO and ZrO2 nanoparticles. The microhardness of the ball-milled alloy and sintered material was found to be 9.28 GPa ± 1.31 GPa and 8.95 GPa ± 0.42 GPa, respectively. The influence of the processing conditions on the structure, phase composition, and microhardness of the alloy is discussed.

5.
J Acoust Soc Am ; 147(4): 2323, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32359258

RESUMO

Impact pile driving creates intense, impulsive sound that radiates into the surrounding environment. Piles driven vertically into the seabed generate an azimuthally symmetric underwater sound field whereas piles driven on an angle will generate an azimuthally dependent sound field. Measurements were made during pile driving of raked piles to secure jacket foundation structures to the seabed in waters off the northeastern coast of the U.S. at ranges between 500 m and 15 km. These measurements were analyzed to investigate variations in rise time, decay time, pulse duration, kurtosis, and sound received levels as a function of range and azimuth. Variations in the radiated sound field along opposing azimuths resulted in differences in measured sound exposure levels of up to 10 dB and greater due to the pile rake as the sound propagated in range. The raked pile configuration was modeled using an equivalent axisymmetric FEM model to describe the azimuthally dependent measured sound fields. Comparable sound level differences in the model results confirmed that the azimuthal discrepancy observed in the measured data was due to the inclination of the pile being driven relative to the receiver.

6.
Materials (Basel) ; 13(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290476

RESUMO

In this work, titanium carbonitrides were synthesized by self-propagating high-temperature synthesis (SHS) in nitrogen. For the first time, the synthesis of titanium carbonitrides by combustion was realized in nitrogen at atmospheric pressure. The synthesis was carried out by subjecting high-energy ball-milled titanium-carbon black powder mixtures to combustion in a nitrogen atmosphere. The influence of the ball milling time on the phase composition of the products of SHS conducted in the Ti+0.3C reaction mixture was studied. It was found that the titanium-carbon black mixtures need to be milled for a certain period of time for the combustion synthesis to yield a single-phase carbonitride product.

7.
Materials (Basel) ; 12(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067793

RESUMO

Titanium carbide (TiC), is the most thermodynamically stable compound in the Ti-C-Cu system, which makes it a suitable reinforcement phase for copper matrix composites. In this work, the interaction of a Ti-Cu alloy with different forms of carbon was investigated to trace the structural evolution leading to the formation of in-situ TiC-Cu composite structures. The reaction mixtures were prepared from Ti25Cu75 alloy ribbons and carbon black or nanodiamonds to test the possibilities of obtaining fine particles of TiC using ball milling and Spark Plasma Sintering (SPS). It was found that the behavior of the reaction mixtures during ball milling depends on the nature of the carbon source. Model experiments were conducted to observe the outcomes of the diffusion processes at the alloy/carbon interface. It was found that titanium atoms diffuse to the alloy/graphite interface and react with carbon forming a titanium carbide layer, but carbon does not diffuse into the alloy. The diffusion experiments as well as the synthesis by ball milling and SPS indicated that the distribution of TiC particles in the composite structures obtained via reactive solid-state processing of Ti25Cu75+C follows the distribution of carbon particles in the reaction mixtures. This justifies the use of carbon sources that have fine particles to prepare the reaction mixtures as well as efficient dispersion of the carbon component in the alloy-carbon mixture when the goal is to synthesize fine particles of TiC in the copper matrix.

8.
PLoS One ; 14(1): e0208619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30668600

RESUMO

Sea noise collected over 2003 to 2017 from the Perth Canyon, Western Australia was analysed for variation in the South Eastern Indian Ocean pygmy blue whale song structure. The primary song-types were: P3, a three unit phrase (I, II and III) repeated with an inter-song interval (ISI) of 170-194 s; P2, a phrase consisting of only units II & III repeated every 84-96 s; and P1 with a phrase consisting of only unit II repeated every 45-49 s. The different ISI values were approximate multiples of each other within a season. When comparing data from each season, across seasons, the ISI value for each song increased significantly through time (all fits had p << 0.001), at 0.30 s/Year (95%CI 0.217-0.383), 0.8 s/Year (95%CI 0.655-1.025) and 1.73 s/Year (95%CI 1.264-2.196) for the P1, P2 and P3 songs respectively. The proportions of each song-type averaged at 21.5, 24.2 and 56% for P1, P2 and P3 occurrence respectively and these ratios could vary by up to ± 8% (95% CI) amongst years. On some occasions animals changed the P3 ISI to be significantly shorter (120-160 s) or longer (220-280 s). Hybrid song patterns occurred where animals combined multiple phrase types into a repeated song. In recent years whales introduced further complexity by splitting song units. This variability of song-type and proportions implies abundance measure for this whale sub population based on song detection needs to factor in trends in song variability to make data comparable between seasons. Further, such variability in song production by a sub population of pygmy blue whales raises questions as to the stability of the song types that are used to delineate populations. The high level of song variability may be driven by an increasing number of background whale callers creating 'noise' and so forcing animals to alter song in order to 'stand out' amongst the crowd.


Assuntos
Balaenoptera/fisiologia , Vocalização Animal/fisiologia , Animais , Oceano Índico , Ruído , Estações do Ano , Espectrografia do Som , Austrália Ocidental
9.
J Acoust Soc Am ; 144(4): EL281, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404464

RESUMO

A line array of 14 ocean bottom seismographs was deployed on the Exmouth Plateau northwest of the North West Cape in Western Australia in December 2014-January 2015. Acoustic data collected with this array were used to evaluate the corridor of the southbound migration of pygmy blue whales of the eastern Indian Ocean population. It is found that pygmy blue whales tended to travel southward much further away from the Western Australian coast, at distances of up to 400 km from shore, than that expected from data on their northbound migration. This is an important observation providing additional information on the migration pattern of pygmy blue whales, which is crucial for assessing their population and migration by passive acoustic means.

10.
J Acoust Soc Am ; 142(2): EL231, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863576

RESUMO

Underwater passive acoustic recordings in the Southern and Indian Oceans off Australia from 2002 to 2016 have regularly captured a tonal signal of about 10 s duration at 22-28 Hz with a symmetrical bell-shaped envelope. The sound is often accompanied by short, higher frequency downsweeps and repeated at irregular intervals varying from 120 to 200 s. It is termed the "spot" call according to its appearance in spectrograms of long-time averaging. Although similar to the first part of an Antarctic blue whale Z-call, evidence suggests the call is produced by another great whale, with the source as yet not identified.


Assuntos
Acústica , Monitoramento Ambiental/métodos , Vocalização Animal/classificação , Baleias/classificação , Baleias/psicologia , Animais , Austrália , Oceano Índico , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Temperatura , Fatores de Tempo
11.
J Acoust Soc Am ; 142(1): 1, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28764416

RESUMO

Sound emissions from impact pile driving of raked piles present a significant azimuthal dependence in the radiated sound field due to the non-axisymmetric orientation of the pile. In this work the sound radiation from raked piles is modeled using a finite element method (FEM) model of the pile and near-field region. The near-field model of the sound field is then used as input into a normal mode model to predict the sound radiation in the far-field. The azimuthal dependence of the radiated sound field is shown to be accurately predicted using an equivalent axisymmetric FEM model of the pile configuration, thus negating the need to construct a fully three-dimensional model (3D) of the raked pile. This is achieved by matching the radiated field from the equivalent axisymmetric pile model to a vertical array of phased point sources, and then horizontally offsetting the source locations to match the incline of the raked pile. The resulting sound field closely matches the numerical predictions from a fully 3D FEM model of the raked pile. The results of numerical modeling are compared to corresponding acoustic measurements taken on the North West shelf of Western Australia.

12.
J Acoust Soc Am ; 141(2): 661, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28253675

RESUMO

The theory of wave propagation and fluctuations in random media has been broadly studied; however the works studying the influence of a changing underwater acoustic environment on the spatial decay and fluctuations of the peak pressure in broadband and impulsive signals are limited. Using a method based on the formulation developed by Dyer and Makris to estimate intensity fluctuations of sound signals in the ocean in conditions of saturated multipath propagation, this paper presents an approach to model peak pressure fluctuations of transient signals propagating underwater. In contrast to the formulation of Dyer and Makris, the approach presented in this work applies extreme value theory using the properties of the peak pressure as a maximum value taken from a Rayleigh distributed amplitude. The location and scale parameters obtained from the best fit to a Gumbel distribution are used to estimate the probability of the peak pressure level staying below a certain threshold. The theory was applied to measurements of signals from an airgun array and offshore impact pile driving, resulting in good agreement in both cases.

13.
Adv Exp Med Biol ; 875: 265-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26610968

RESUMO

The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.


Assuntos
Acústica , Água do Mar , Som , Animais , Espectrografia do Som , Gravação em Fita , Austrália Ocidental
14.
J Acoust Soc Am ; 138(3): EL287-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26428828

RESUMO

Numerical models of underwater sound propagation predict the energy of impulsive signals and its decay with range with a better accuracy than the peak pressure. A semi-empirical formula is suggested to predict the peak pressure of man-made impulsive signals based on numerical predictions of their energy. The approach discussed by Galindo-Romero, Lippert, and Gavrilov [J. Acoust. Soc. Am. 138, in press (2015)] for airgun signals is modified to predict the peak pressure from offshore pile driving, which accounts for impact and pile parameters. It is shown that using the modified empirical formula provides more accurate predictions of the peak pressure than direct numerical simulations of the signal waveform.

15.
J Acoust Soc Am ; 137(6): 3077-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093399

RESUMO

Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.


Assuntos
Acústica , Algoritmos , Cetáceos/classificação , Cetáceos/fisiologia , Ecolocação/classificação , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Vocalização Animal/classificação , Animais , Reconhecimento Automatizado de Padrão , Espectrografia do Som , Fatores de Tempo
16.
J Acoust Soc Am ; 138(6): EL540-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26723364

RESUMO

This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise.

17.
J Acoust Soc Am ; 134(1): 207-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23862798

RESUMO

Measurements of low-frequency sound propagation over the areas of the Australian continental shelf, where the bottom sediments consist primarily of calcarenite, have revealed that acoustic transmission losses are generally much higher than those observed over other continental shelves and remain relatively low only in a few narrow frequency bands. This paper considers this phenomenon and provides a physical interpretation in terms of normal modes in shallow water over a layered elastic seabed with a shear wave speed comparable to but lower than the water-column sound speed. A theoretical analysis and numerical modeling show that, in such environments, low attenuation of underwater sound is expected only in narrow frequency bands just above the modal critical frequencies which in turn are governed primarily by the water depth and compressional wave speed in the seabed. In addition, the effect of a thin layer of harder cap-rock overlaying less consolidated sediments is considered. Low-frequency transmission loss data collected from an offshore seismic survey in Bass Strait on the southern Australian continental shelf are analyzed and shown to be in broad agreement with the numerical predictions based on the theoretical analysis and modeling using an elastic parabolic equation solution for range-dependent bathymetry.

18.
J Acoust Soc Am ; 133(6): EL465-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23742441

RESUMO

Underwater acoustic recordings of six Floating Production Storage and Offloading (FPSO) vessels moored off Western Australia are presented. Monopole source spectra were computed for use in environmental impact assessments of underwater noise. Given that operations on the FPSOs varied over the period of recording, and were sometimes unknown, the authors present a statistical approach to noise level estimation. No significant or consistent aspect dependence was found for the six FPSOs. Noise levels did not scale with FPSO size or power. The 5th, 50th (median), and 95th percentile source levels (broadband, 20 to 2500 Hz) were 188, 181, and 173 dB re 1 µPa @ 1 m, respectively.

19.
J Acoust Soc Am ; 131(6): 4476-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22712920

RESUMO

Time averaged narrow-band noise near 27 Hz produced by vocalizations of many distant Antarctic blue whales intensifies seasonally from early February to late October in the ocean off Australia's South West. Spectral characteristics of long term patterns in this noise band were analyzed using ambient noise data collected at the Comprehensive Nuclear-Test-Ban Treaty hydroacoustic station off Cape Leeuwin, Western Australia over 2002-2010. Within 7 day averaged noise spectra derived from 4096-point FFT (∼0.06 Hz frequency resolution), the -3-dB width of the spectral peak from the upper tone of Antarctic blue whale vocalization was about 0.5 Hz. The spectral frequency peak of this tonal call was regularly but not gradually decreasing over the 9 years of observation from ∼27.7 Hz in 2002 to ∼26.6 Hz in 2010. The average frequency peak steadily decreased at a greater rate within a season at 0.4-0.5 Hz/season but then in the next year recovered to approximately the mean value of the previous season. A regression analysis showed that the interannual decrease rate of the peak frequency of the upper tonal call was 0.135 ± 0.003 Hz/year over 2002-2010 (R(2) ≈ 0.99). Possible causes of such a decline in the whale vocalization frequency are considered.


Assuntos
Balaenoptera/fisiologia , Vocalização Animal/fisiologia , Animais , Ruído , Estações do Ano , Espectrografia do Som
20.
J Acoust Soc Am ; 130(6): 3651-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225022

RESUMO

Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 µPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency.


Assuntos
Balaenoptera/fisiologia , Vocalização Animal/fisiologia , Animais , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...